Showing posts with label signals. Show all posts
Showing posts with label signals. Show all posts

Thursday, June 11, 2009

POSIX Process Group !

If you want to kill a process by its pid with all its sub process and dont want the child process to continue under init process ? Then process group is the one you may want to look at.

p1->p2->p3

By using p1, if you want to kill entire p1,p2 and p3 then we can look into process group. Remember that linux kill command has a option to send signals to entire process group like this :

kill -s sig_num -pid

Also, if you want to start a process through a cgi script and detach it completely from httpd process this would be helpful.

A small program to showcase the use of POSIX setsid.

use POSIX qw(setsid);

chdir '/' or die "Can't chdir to /: $!";
umask 0;
open STDIN, '/dev/null' or die "Can't read /dev/null: $!";
#open STDOUT, '>/dev/null' or die "Can't write to /dev/null: $!";
open STDERR, '>/dev/null' or die "Can't write to /dev/null: $!";
defined(my $pid = fork) or die "Can't fork: $!";
exit if $pid;
setsid or die "Can't start a new session: $!";

while(1) {
sleep(5);
print "Hello...\n";
}

Further details on the process groups ...

Process Groups and Tty Management

One of the areas least-understood by most UNIX programmers is process-group management, a topic that is inseparable from signal-handling.

To understand why process-groups exist, think back to the world before windowing systems.

Your average developer wants to run several programs simultaneously -- usually at least an editor and a compilation, although often a debugger as well. Obviously you cannot have two processes reading from the same tty at the same time -- they'll each get some of the characters you type, a useless situation. Likewise output should be managed so that your editor's output doesn't get the output of a background compile intermixed, destroying the screen.

This has been a problem with many operating systems. One solution, used by Tenex and TOPS-20, was to use process stacks. You could interrupt a process to run another process, and when the new process was finished the old would restart.

While this was useful it didn't allow you to switch back and forth between processes (like a debugger and editor) without exiting one of them. Clearly there must be a better way.

The Berkeley Approach

The Berkeley UNIX folks came up with a different idea, called process groups. Whenever the shell starts a new command each process in the command (there can be more than one, eg "ls | more") is placed in its own process group, which is identified by a number. The tty has a concept of "foreground process group", the group of processes which is allowed to do input and output to the tty. The shell sets the foreground process group when starting a new set of processes; by convention the new process group number is the same as the process ID of one of the members of the group. A set of processes has a tty device to which it belongs, called its "controlling tty". This tty device is what is returned when /dev/tty is opened.

Because you want to be able to interrupt the foreground processes, the tty watches for particular keypresses (^Z is the most common one) and sends an interrupt signal to the foreground process group when it sees one. All processes in the process group see the signal, and all stop -- returning control to the shell.

At this point the shell can place any of the active process groups back in the foreground and restart the processes, or start a new process group.

To handle the case where a background process tries to read or write from the tty, the tty driver will send a SIGTTIN or SIGTTOU signal to any background process which attempts to perform such an operation. Under normal circumstances, therefore, only the foreground process(es) can use the tty.

The set of commands to handle process groups is small and straightforward. Under BSD, the commands are:

int setpgrp(int process_id, int group_number);

Move a process into a process group. If you are creating a new process group the group_number should be the same as process_id. If process_id is zero, the current process is moved.

int getpgrp(int process_id);

Find the process group of the indicated process. If process_id is zero, the current process is inspected.

int killpgrp(int signal_number, int group_number);

Send a signal to all members of the indicated process group.

int ioctl(int tty, TIOCSETPGRP, int foreground_group);

Change the foreground process group of a tty.

int ioctl(int tty, TIOCGETPGRP, int *foreground_group);

Find the foreground process group of a tty.

int ioctl(int tty, TIOCNOTTY, 0);

Disassociate this process from its controlling tty. The next tty device that is opened will become the new controlling tty.

The POSIX Approach

The BSD process-group API is rarely used today, although most of the concepts survive. The POSIX specification has provided new interfaces for handling process groups, and even overloaded some existing ones. It also limits several of the calls in ways which BSD did not.

The POSIX process-group API is:

int setpgid(int process_id, int process_group);

Move a process into a new process group. Process_id is the process to move, process_group is the new process group.

int getpgid(int process_id);

Find the process group of a process. Process_id is the process to inspect.

int getpgrp(void);

Find the process group of the current process. This is identical to getpgrp(getpid()).

int tcsetpgrp(int tty, int foreground_group);

Change the foreground process group of a tty. Tty is the file descriptor of the tty to change, foreground_group is the new foreground process group.

int tcgetpgrp(int tty, int *foreground_group);

Find the foreground process group of a tty. Tty is the file descriptor of the tty to inspect, foreground_group is returned filled with the foreground process group of the tty.

int kill(int -process_group, int signal_number);

Send a signal to a process group. Note that process_group must be passed as a negative value, otherwise the signal goes to the indicated process.

Differences between POSIX and BSD Process Group Management

The setpgrp() function is called setpgid() under POSIX and is essentially identical. You must be careful under POSIX not to use the setpgrp() function -- usually it exists, but performs the operation of setsid().

The getpgrp() function was renamed getpgid(), and getpgid() can only inspect the current process' process group.

The killpgrp() function doesn't exist at all. Instead, a negative value passed to the kill() function is taken to mean the process group. Thus you'd perform killpgrp(process_group) by calling kill(-process_group).

The ioctl() commands for querying and changing the foreground process group are replaced with first-class functions:

  • int tcsetpgrp(int tty, int process_group);
  • int tcgetpgrp(int tty, int *process_group);

While the original BSD ioctl() functions would allow any tty to take on any process group (or even nonexistant process groups) as its foreground tty, POSIX allows only process groups which have the tty as their controlling tty. This limitation disallows some ambiguous (and potentially security-undermining) cases present in BSD.

The TIOCNOTTY ioctl used in BSD is replaced with the setsid() function, which is essentially identical to:

if (getpgrp() != getpid()) { ioctl(tty, TIOCNOTTY, 0); setpgrp(getpid(), getpid()); }

It releases the current tty and puts the calling process into its own process group. Notice that nothing is done if the calling process is already in its own process group -- this is another new limitation, and eliminates some ambiguous cases that existed in BSD (along with some of BSD's flexibility).

Reference : http://www.cs.ucsb.edu/~almeroth/classes/W99.276/assignment1/signals.html

Wednesday, May 27, 2009

Linux Signals for the Application Programmer

Introduction about the usage of signals in Linux ...

A good understanding of signals is important for an application programmer working in the Linux environment. Knowledge of the signaling mechanism and familiarity with signal-related functions help one write programs more efficiently.

An application program executes sequentially if every instruction runs properly. In case of an error or any anomaly during the execution of a program, the kernel can use signals to notify the process. Signals also have been used to communicate and synchronize processes and to simplify interprocess communications (IPCs). Although we now have advanced synchronization tools and many IPC mechanisms, signals play a vital role in Linux for handling exceptions and interrupts. Signals have been used for approximately 30 years without any major modifications.

The first 31 signals are standard signals, some of which date back to 1970s UNIX from Bell Labs. The POSIX (Portable Operating Systems and Interface for UNIX) standard introduced a new class of signals designated as real-time signals, with numbers ranging from 32 to 63.

A signal is generated when an event occurs, and then the kernel passes the event to a receiving process. Sometimes a process can send a signal to other processes. Besides process-to-process signaling, there are many situations when the kernel originates a signal, such as when file size exceeds limits, when an I/O device is ready, when encountering an illegal instruction or when the user sends a terminal interrupt like Ctrl-C or Ctrl-Z.

Every signal has a name starting with SIG and is defined as a positive unique integer number. In a shell prompt, the kill -l command will display all signals with signal number and corresponding signal name. Signal numbers are defined in the /usr/include/bits/signum.h file, and the source file is /usr/src/linux/kernel/signal.c.

A process will receive a signal when it is running in user mode. If the receiving process is running in kernel mode, the execution of the signal will start only after the process returns to user mode.

Signals sent to a non-running process must be saved by the kernel until the process resumes execution. Sleeping processes can be interruptible or uninterruptible. If a process receives a signal when it is in an interruptible sleep state, for example, waiting for terminal I/O, the kernel will awaken the process to handle the signal. If a process receives a signal when it is in uninterruptible sleep, such as waiting for disk I/O, the kernel defers the signal until the event completes.

When a process receives a signal, one of three things could happen. First, the process could ignore the signal. Second, it could catch the signal and execute a special function called a signal handler. Third, it could execute the default action for that signal; for example, the default action for signal 15, SIGTERM, is to terminate the process. Some signals cannot be ignored, and others do not have default actions, so they are ignored by default. See the signal(7) man page for a reference list of signal names, numbers, default actions and whether they can be caught.

When a process executes a signal handler, if some other signal arrives the new signal is blocked until the handler returns. This article explains the fundamentals of the signaling mechanism and elaborates on signal-related functions with syntax and working procedures.

Signals inside the Kernel

Where is the information about a signal stored in the process? The kernel has a fixed-size array of proc structures called the process table. The u or user area of the proc structure maintains control information about a process. The major fields in the u area include signal handlers and related information. The signal handler is an array with each element for each type of signal being defined in the system, indicating the action of the process on the receipt of the signal. The proc structure maintains signal-handling information, such as masks of signals that are ignored, blocked, posted and handled.

Once a signal is generated, the kernel sets a bit in the signal field of the process table entry. If the signal is being ignored, the kernel returns without taking any action. Because the signal field is one bit per signal, multiple occurrences of the same signal are not maintained.

When the signal is delivered, the receiving process should act depending on the signal. The action may be terminating the process, terminating the process after creating a core dump, ignoring the signal, executing the user-defined signal handler (if the signal is caught by the process) or resuming the process if it is temporarily suspended.

The core dump is a file called core, which has an image of the terminated process. It contains the process' variables and stack details at the time of failure. From a core file, the programmer can investigate the reason for termination using a debugger. The word core appears here for a historical reason: main memory used to be made from doughnut-shaped magnets called inductor cores.

Catching a signal means instructing the kernel that if a given signal has occurred, the program's own signal handler should be executed, instead of the default. Two exceptions are SIGKILL and SIGSTOP, which cannot be caught or ignored.

sigset_t is a basic data structure used to store the signals. The structure sent to a process is a sigset_t array of bits, one for each signal type:

typedef struct {
unsigned long sig[2];
} sigset_t;

Because each unsigned long number consists of 32 bits, the maximum number of signals that may be declared in Linux is 64 (according to POSIX compliance). No signal has the number 0, so the other 31 bits in the first element of sigset_t are the standard first 31 signals, and the bits in the second element are the real-time signal numbers 32-64. The size of sigset_t is 128 bytes.

Reference : http://m.linuxjournal.com/article/6483